逆数の多重対数関数

\[ \Li_{n}\left(\frac{1}{z}\right)=\left(-1\right)^{n+1}\Li_{n}\left(z\right)+\left(1+\left(-1\right)^{n}\right)\zeta\left(n\right)+\left(-1\right)^{n}\sum_{k=0}^{\left\lfloor \frac{n-3}{2}\right\rfloor }\left\{ 2\zeta\left(2\left(k+1\right)\right)\frac{\Log^{n-2\left(k+1\right)}z}{\left(n-2\left(k+1\right)\right)!}\right\} +\left(-1\right)^{n+1}\frac{\Log^{n}z}{n!}+\left(-1\right)^{n+1}\frac{\Log^{n-1}z}{\left(n-1\right)!}\left(\Log\left(1-z\right)-\Log\left(z-1\right)\right) \]

n乗同士の和の基本対称式表示

\[ a^{k}+b^{k}=\left(1-\delta_{0,k}\right)\sum_{j=0}^{\left\lfloor \frac{k}{2}\right\rfloor }\left(-1\right)^{j}\frac{k}{k-j}C\left(k-j,j\right)\left(a+b\right)^{k-2j}\left(ab\right)^{j}+2\delta_{0,k} \]