数列の極限
数列\(\{a_{n}\}\)が
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow|a_{n}-b|<\epsilon \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=b \] で表し、「数列\(\{a_{n}\}\)は\(b\)に収束する」という。
\[ \forall\epsilon>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow|a_{n}-b|<\epsilon \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=b \] で表し、「数列\(\{a_{n}\}\)は\(b\)に収束する」という。
数列\(\{a_{n}\}\)が
\[ \forall K>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}> K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=\infty \] で表し、「数列\(\{a_{n}\}\)は正の無限大に発散する」という。
同様に
\[ \forall K<0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}<K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=-\infty \] で表し、「数列\(\{a_{n}\}\)は負の無限大に発散する」という。
\[ \forall K>0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}> K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=\infty \] で表し、「数列\(\{a_{n}\}\)は正の無限大に発散する」という。
同様に
\[ \forall K<0,\exists N\in\mathbb{N},\forall n\in\mathbb{N},n> N\Rightarrow a_{n}<K \] を満たすとき
\[ \lim_{n\rightarrow\infty}a_{n}=-\infty \] で表し、「数列\(\{a_{n}\}\)は負の無限大に発散する」という。
ページ情報
タイトル | 数列の極限 |
URL | https://www.nomuramath.com/oyojhum9/ |
SNSボタン |
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]
ライプニッツ級数
積分問題
\[
\int_{0}^{\infty}\frac{1}{1+x^{n}}dx
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]