3角関数・双曲線関数の還元公式(負角・余角・補角)
3角関数・双曲線関数の還元公式(負角・余角・補角)
3角関数
負角
余角
補角
双曲線関数
負角
余角
補角
3角関数
負角
(1)
\[ \sin\left(-z\right)=-\sin z \](2)
\[ \cos\left(-z\right)=\cos z \](3)
\[ \tan\left(-z\right)=-\tan z \]余角
(4)
\[ \sin\left(\frac{\pi}{2}\pm z\right)=\cos\left(z\right) \](5)
\[ \cos\left(\frac{\pi}{2}\pm z\right)=\mp\sin\left(z\right) \](6)
\[ \tan\left(\frac{\pi}{2}\pm z\right)=\mp\tan^{-1}\left(z\right) \]補角
(7)
\[ \sin\left(z\pm\pi\right)=-\sin\left(z\right) \](8)
\[ \cos\left(z\pm\pi\right)=-\cos\left(z\right) \](9)
\[ \tan\left(z\pm\pi\right)=\tan\left(z\right) \]双曲線関数
負角
(10)
\[ \sinh\left(-z\right)=-\sinh z \](11)
\[ \cosh\left(-z\right)=\cosh z \](12)
\[ \tanh\left(-z\right)=-\tanh z \]余角
(13)
\[ \sinh\left(\frac{\pi}{2}i\pm z\right)=i\cosh z \](14)
\[ \cosh\left(\frac{\pi}{2}i\pm z\right)=\pm i\sinh z \](15)
\[ \tanh\left(\frac{\pi}{2}\pm z\right)=\pm\tanh^{-1}z \]補角
(16)
\[ \sinh\left(z\pm\pi i\right)=-\sinh z \](17)
\[ \cosh\left(z\pm\pi i\right)=-\cosh\left(z\right) \](18)
\[ \tanh\left(z\pm\pi i\right)=\tanh\left(z\right) \](1)
\begin{align*} \sin\left(-z\right) & =\frac{e^{-iz}-e^{iz}}{2i}\\ & =-\frac{e^{iz}-e^{-iz}}{2i}\\ & =-\sin z \end{align*}(2)
\begin{align*} \cos\left(-z\right) & =\frac{e^{-iz}+e^{iz}}{2}\\ & =\cos z \end{align*}(3)
\begin{align*} \tan\left(-z\right) & =\frac{\sin\left(-z\right)}{\cos\left(-z\right)}\\ & =\frac{-\sin z}{\cos z}\\ & =-\tan z \end{align*}(4)
\begin{align*} \sin\left(\frac{\pi}{2}\pm z\right) & =\sin\left(\frac{\pi}{2}\right)\cos\left(\pm z\right)\pm\cos\left(\frac{\pi}{2}\right)\sin\left(\pm z\right)\\ & =\cos\left(z\right) \end{align*}(5)
\begin{align*} \cos\left(\frac{\pi}{2}\pm z\right) & =\cos\left(\frac{\pi}{2}\right)\cos\left(\pm z\right)-\sin\left(\frac{\pi}{2}\right)\sin\left(\pm z\right)\\ & =\mp\sin\left(z\right) \end{align*}(6)
\begin{align*} \tan\left(\frac{\pi}{2}\pm z\right) & =\frac{\sin\left(\frac{\pi}{2}\pm z\right)}{\cos\left(\frac{\pi}{2}\pm z\right)}\\ & =\frac{\cos\left(z\right)}{\mp\sin\left(z\right)}\\ & =\mp\tan^{-1}\left(z\right) \end{align*}(7)
\begin{align*} \sin\left(z\pm\pi\right) & =\sin\left(z\right)\cos\left(\pi\right)\pm\cos\left(z\right)\sin\left(\pi\right)\\ & =-\sin\left(z\right) \end{align*}(8)
\begin{align*} \cos\left(z\pm\pi\right) & =\cos\left(z\right)\cos\left(\pi\right)\mp\sin\left(z\right)\sin\left(\pi\right)\\ & =-\cos\left(z\right) \end{align*}(9)
\begin{align*} \tan\left(z\pm\pi\right) & =\frac{\sin\left(z\pm\pi\right)}{\cos\left(z\pm\pi\right)}\\ & =\frac{-\sin\left(z\right)}{-\cos\left(z\right)}\\ & =\tan\left(z\right) \end{align*}(10)
\begin{align*} \sinh\left(-z\right) & =-i\sin\left(-iz\right)\\ & =i\sin\left(iz\right)\cmt{\because\sin\left(-z\right)=-\sin z}\\ & =-\sinh z \end{align*}(11)
\begin{align*} \cosh\left(-z\right) & =\cos\left(-iz\right)\\ & =\cos\left(iz\right)\cmt{\because\cos\left(-z\right)=\cos z}\\ & =\cosh z \end{align*}(12)
\begin{align*} \tanh\left(-z\right) & =\frac{\sinh\left(-z\right)}{\cosh\left(-z\right)}\\ & =\frac{-\sinh z}{\cosh z}\\ & =-\tanh z \end{align*}(13)
\begin{align*} \sinh\left(\frac{\pi}{2}i\pm z\right) & =i\sin\left(\frac{\pi}{2}\mp zi\right)\\ & =i\cos\left(zi\right)\cmt{\because\sin\left(\frac{\pi}{2}\pm z\right)=\cos\left(z\right)}\\ & =i\cosh z \end{align*}(14)
\begin{align*} \cosh\left(\frac{\pi}{2}i\pm z\right) & =\cos\left(\frac{\pi}{2}\mp zi\right)\\ & =\pm\sin\left(zi\right)\cmt{\because\cos\left(\frac{\pi}{2}\pm z\right)=\mp\sin\left(z\right)}\\ & =\pm i\sinh z \end{align*}(15)
\begin{align*} \tanh\left(\frac{\pi}{2}\pm z\right) & =\frac{\sinh\left(\frac{\pi}{2}i\pm z\right)}{\cosh\left(\frac{\pi}{2}i\pm z\right)}\\ & =\frac{i\cosh z}{\pm i\sinh z}\\ & =\pm\tanh^{-1}z \end{align*}(16)
\begin{align*} \sinh\left(z\pm\pi i\right) & =i\sin\left(-zi\pm\pi\right)\\ & =-i\sin\left(-zi\right)\cmt{\because\sin\left(z\pm\pi\right)=-\sin\left(z\right)}\\ & =-\sinh z \end{align*}(17)
\begin{align*} \cosh\left(z\pm\pi i\right) & =\cos\left(-zi\pm\pi\right)\\ & =-\cos\left(-zi\right)\cmt{\because\cos\left(z\pm\pi\right)=-\cos\left(z\right)}\\ & =-\cosh\left(z\right) \end{align*}(18)
\begin{align*} \tanh\left(z\pm\pi i\right) & =\frac{\sinh\left(z\pm\pi i\right)}{\cosh\left(z\pm\pi i\right)}\\ & =\frac{-\sinh z}{-\cosh\left(z\right)}\\ & =\tanh\left(z\right) \end{align*}ページ情報
タイトル | 3角関数・双曲線関数の還元公式(負角・余角・補角) |
URL | https://www.nomuramath.com/rj4agkrd/ |
SNSボタン |
三角関数・双曲線関数の一次結合の逆数の積分
\[
\int\frac{1}{\alpha\sin z+\beta\cos z+\gamma}dz=-\frac{2}{\sqrt{\alpha^{2}+\beta^{2}-\gamma^{2}}}\tanh^{\bullet}\frac{\left(\gamma-\beta\right)\tan\frac{z}{2}+\alpha}{\sqrt{\alpha^{2}+\beta^{2}-\gamma^{2}}}+C
\]
逆3角関数と逆双曲線関数の微分
\[
\frac{d}{dx}\sin^{\bullet}x=\frac{1}{\sqrt{1-x^{2}}}
\]
三角関数を正接の半角、双曲線関数を双曲線正接の半角で表す。
\[
\sin z=\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}}
\]
三角関数と双曲線関数の実部と虚部
\[
\tan z=\frac{\sin\left(2\Re z\right)+i\sinh\left(2\Im z\right)}{\cos\left(2\Re z\right)+\cosh\left(2\Im z\right)}
\]