三角関数の合成
三角関数の合成
(1)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*} \begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}(2)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta) \end{align*} \begin{align*} \beta & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*}(1)
\begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}+\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*}
(2)
(1)より、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta+\alpha-\frac{\pi}{2})\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta)\qquad,\qquad\beta=\frac{\pi}{2}-\alpha \end{align*} \begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*} 同様に、
\begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arccos\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} これより、
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}
(2)別解
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}+\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\cos\beta+\sin\theta\sin\beta\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta-\beta) \end{align*}
ページ情報
タイトル | 三角関数の合成 |
URL | https://www.nomuramath.com/ti9axpox/ |
SNSボタン |
逆三角関数の負角、余角、逆数
\[
\cos^{\bullet}x+\sin^{\bullet}x=\frac{\pi}{2}
\]
逆三角関数と逆双曲線関数の積分
\[
\int\sin^{\bullet}xdx=x\sin^{\bullet}x+\sqrt{1-x^{2}}
\]
逆三角関数と逆双曲線関数の関係
\[
\Sin^{\bullet}\left(iz\right)=i\Sinh^{\bullet}z
\]
正接関数・双曲線正接関数の半角公式の別表示
\[
\tan\frac{z}{2}=\frac{\sin z}{1+\cos z}
\]