完備リーマンゼータ関数の関数等式

完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。

ページ情報
タイトル
完備リーマンゼータ関数の関数等式
URL
https://www.nomuramath.com/x2s85a76/
SNSボタン