三角関数と双曲線関数の微分

三角関数の微分

(1)

ddxsinx=cosx

(2)

ddxcosx=sinx

(3)

ddxtanx=cos2x

(4)

ddxsin1x=sin1xtan1x

(5)

ddxcos1x=cos1xtanx

(6)

ddxtan1x=sin2x

(1)

ddxsinx=ddxeixeix2i=ieix+ieix2i=cosx

(2)

ddxcosx=ddxeix+eix2=ieixieix2=eixeix2i=sinx

(3)

ddxtanx=ddxsinxcosx=(sinx)cosxsinx(cosx)cos2x=cos2x+sin2xcos2x=cos2x

(4)

ddxsin1x=dsinxdxdsin1xdsinx=cosx(sin2x)=sin1xtan1x

(5)

ddxcos1x=dcosxdxdcos1xdcosx=sinx(cos2x)=cos1xtanx

(6)

ddxtan1x=dtanxdxdtan1xdtanx=cos2x(tan2x)=sin2x
双曲線関数の微分

(1)

ddxsinhx=coshx

(2)

ddxcoshx=sinhx

(3)

ddxtanhx=cosh2x

(4)

ddxsinh1x=sinh1xtanh1x

(5)

ddxcosh1x=cosh1xtanhx

(6)

ddxtanh1x=sinh2x

(1)

ddxsinhx=iddxsin(ix)=cos(ix)=coshx

(2)

ddxcoshx=ddxcos(ix)=isin(ix)=sinhx

(3)

ddxtanhx=iddxtan(ix)=cos2(ix)=cosh2x

(4)

ddxsinh1x=iddxsin1(ix)=sin1(ix)tan1(ix)=sinh1xtanh1x

(5)

ddxcosh1x=ddxcos1(ix)=icos1(ix)tan(ix)=cosh1xtanhx

(6)

ddxtanh1x=iddxtan1(ix)=sin2(ix)=sinh2x
数学言語
在宅ワーカー募集中
スポンサー募集!

ページ情報
タイトル
三角関数と双曲線関数の微分
URL
https://www.nomuramath.com/xw1wbjdm/
SNSボタン