logの2乗の級数表示
\(\log^{2}(1-x)\)は以下のように級数で表される。
\[ \log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1} \] ここで、\(H_k\)は調和数である。
\[ \log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1} \] ここで、\(H_k\)は調和数である。
\[
\log(1-x)=-\sum_{k=1}^{\infty}\frac{x^{k}}{k}
\]
より、
\begin{align*} \log^{2}(1-x) & =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\frac{1}{jk}x^{j+k}\\ & =\sum_{t=2}^{\infty}\sum_{k=1}^{t-1}\frac{1}{(t-k)k}x^{t}\\ & =\sum_{t=2}^{\infty}\sum_{k=1}^{t-1}\left(\frac{1}{t-k}+\frac{1}{k}\right)\frac{x^{t}}{t}\\ & =\sum_{t=2}^{\infty}\frac{2H_{t-1}}{t}x^{t}\\ & =2\sum_{t=1}^{\infty}\frac{H_{t}}{t+1}x^{t+1} \end{align*}
\begin{align*} \log^{2}(1-x) & =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\frac{1}{jk}x^{j+k}\\ & =\sum_{t=2}^{\infty}\sum_{k=1}^{t-1}\frac{1}{(t-k)k}x^{t}\\ & =\sum_{t=2}^{\infty}\sum_{k=1}^{t-1}\left(\frac{1}{t-k}+\frac{1}{k}\right)\frac{x^{t}}{t}\\ & =\sum_{t=2}^{\infty}\frac{2H_{t-1}}{t}x^{t}\\ & =2\sum_{t=1}^{\infty}\frac{H_{t}}{t+1}x^{t+1} \end{align*}
ページ情報
タイトル | logの2乗の級数表示 |
URL | https://www.nomuramath.com/cmd7wxl7/ |
SNSボタン |
(*)log(1-x)のn乗の展開
\[
\log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n}
\]
積分問題
\[
\int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s)
\]
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
階乗と冪乗の極限
\[
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0
\]