階乗冪(下降階乗・上昇階乗)の1/2値
\(n\in\mathbb{N}\)とする。
(1)
\[ P\left(-\frac{1}{2},n\right)=\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!} \](2)
\[ Q\left(\frac{1}{2},n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!} \](1)
\begin{align*} P\left(-\frac{1}{2},n\right) & =\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(1-\left(\frac{1}{2}+n\right)\right)}\\ & =\frac{1}{\pi}\sin\left(\left(\frac{1}{2}+n\right)\pi\right)\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}+n\right)\\ & =\frac{(-1)^{n}}{\pi}\Gamma\left(\frac{1}{2}\right)\frac{(2\pi)^{\frac{1}{2}}\Gamma(2n)}{2^{2n-\frac{1}{2}}\Gamma(n)}\\ & =\frac{(-1)^{n}\Gamma(2n)}{2^{2n-1}\Gamma(n)}\\ & =\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!} \end{align*}(1)-2
\begin{align*} P\left(-\frac{1}{2},n\right) & =\prod_{j=0}^{n-1}\left(-\frac{1}{2}-j\right)\\ & =\prod_{j=0}^{n-1}\left(-\frac{1}{2}\left(1+2j\right)\right)\\ & =\left(-\frac{1}{2}\right)^{n}(2n-1)!!\\ & =\left(-\frac{1}{2}\right)^{n}\frac{(2n-1)!}{(2n-2)!!}\\ & =\left(-\frac{1}{2}\right)^{n}\frac{(2n-1)!}{2^{n-1}(n-1)!}\\ & =\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!} \end{align*}(2)
\begin{align*} Q\left(\frac{1}{2},n\right) & =P\left(-\frac{1}{2}+n,n\right)\\ & =(-1)^{n}P\left(-\frac{1}{2},n\right)\\ & =\frac{(2n-1)!}{2^{2n-1}(n-1)!} \end{align*}ページ情報
タイトル | 階乗冪(下降階乗・上昇階乗)の1/2値 |
URL | https://www.nomuramath.com/gqhoo8ar/ |
SNSボタン |
和の階乗冪(下降階乗・上昇階乗)
\[
P(x+y,n)=\sum_{k=0}^{n}C(n,k)P(x,k)P(y,n-k)
\]
階乗冪(上昇階乗・下降階乗)同士の関係
\[
P(x,y)=P^{-1}(x-y,-y)
\]
階乗冪(上昇階乗・下降階乗)とその逆数の値が0となるとき
\[
\forall m,n\in\mathbb{Z},0\leq m<n\Leftrightarrow P\left(m,n\right)=0
\]
階乗冪(上昇階乗・下降階乗)の母関数
\[
\sum_{k=0}^{\infty}P(k,n)x^{k}=\frac{x^{n}n!}{(1-x)^{n+1}}
\]