e^(ikx)の和
\(n\in\mathbb{N}_{0}\)とする。
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\begin{align*}
\sum_{k=-n}^{n}e^{ikx} & =\sum_{k=0}^{2n}e^{i(k-n)x}\\
& =e^{-inx}\sum_{k=0}^{2n}e^{ikx}\\
& =e^{-inx}\frac{1-e^{i(2n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-inx}-e^{i(n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-i\left(n+\frac{1}{2}\right)x}-e^{i\left(n+\frac{1}{2}\right)x}}{e^{-i\frac{x}{2}}-e^{i\frac{x}{2}}}\\
& =\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}}
\end{align*}
ページ情報
| タイトル | e^(ikx)の和 |
| URL | https://www.nomuramath.com/ohqhumvt/ |
| SNSボタン |
線形包の定義
\[
\left\langle S\right\rangle =\left\{ \sum_{i=1}^{r}c_{i}\boldsymbol{v}_{i};r<\infty,\left\{ \boldsymbol{v}_{i}\right\} _{i\in\left\{ 1,2,\cdots,r\right\} }\subseteq S,\left\{ c_{i}\right\} _{i\in\left\{ 1,2,\cdots,r\right\} }\subseteq K\right\}
\]
固有方程式・固有値・固有ベクトルと固有空間
\[
W\left(\lambda\right)=\ker\left(A-\lambda I\right)
\]
固有多項式・最小多項式の性質
固有多項式・最小多項式ともに固有値を代入すると0になる。
固有多項式と最小多項式の定義
\[
p_{A}\left(\lambda\right)=\det\left(\lambda I-A\right)
\]

