ゼータ関数とイータ関数の関係
ゼータ関数とイータ関数は以下の関係がある。
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\begin{align*}
\eta(s) & =\sum_{k=1}^{^{\infty}}(-1)^{k+1}k^{-s}\\
& =\sum_{k=1}^{^{\infty}}(-1)^{2k+1}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(-1)^{2k}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}-\sum_{k=1}^{^{\infty}}(2k)^{-s}\\
& =-2^{1-s}\sum_{k=1}^{^{\infty}}k^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}\\
& =(1-2^{1-s})\zeta(s)
\end{align*}
ページ情報
タイトル | ゼータ関数とイータ関数の関係 |
URL | https://www.nomuramath.com/wsvsj63f/ |
SNSボタン |
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
フルヴィッツ・ゼータ関数の積分表現
\[
\zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[
\zeta\left(s,1\right)=\zeta\left(s\right)
\]