ガンマ関数の微分
ガンマ関数の微分は以下の通りになる。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\begin{align*}
\frac{d}{dz}\Gamma(z) & =\Gamma(z)\frac{d}{dz}\log\left(\Gamma(z)\right)\\
& =\Gamma(z)\psi(z)
\end{align*}
ページ情報
タイトル | ガンマ関数の微分 |
URL | https://www.nomuramath.com/ntcr6sqv/ |
SNSボタン |
ディガンマ関数・ポリガンマ関数の級数表示・テイラー展開と調和数・一般化調和数
\[
\psi\left(z\right)=-\gamma+H_{z-1}
\]
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
不完全ガンマ関数とガンマ関数との関係
\[
\gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right)
\]
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]