2項係数の2乗和
中2項係数の2乗和
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\begin{align*}
\sum_{j=0}^{m}C^{2}(m,j) & =\sum_{j=0}^{m}C(m,j)C(m,m-j)\\
& =C(2m,m)
\end{align*}
ページ情報
タイトル | 2項係数の2乗和 |
URL | https://www.nomuramath.com/y6xkt7ax/ |
SNSボタン |
2項係数が0になるとき
\[
\forall m,n\in\mathbb{Z},\left(0\leq m<n\right)\lor\left(n<0\leq m\right)\lor\left(m<n<0\right)\Leftrightarrow C\left(m,n\right)=0
\]
2項変換と交代2項変換の母関数
\[
\sum_{k=0}^{\infty}b_{k}x^{k}=\frac{1}{1-x}\sum_{k=0}^{\infty}a_{k}\left(\frac{x}{1-x}\right)^{k}
\]
飛び飛びの2項定理
\[
\sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\}
\]
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]