2項係数の2乗和
中2項係数の2乗和
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\(m\in\mathbb{Z}_{0}\)とする。
\[ \sum_{j=0}^{m}C^{2}(m,j)=C(2m,m) \]
\begin{align*}
\sum_{j=0}^{m}C^{2}(m,j) & =\sum_{j=0}^{m}C(m,j)C(m,m-j)\\
& =C(2m,m)
\end{align*}
ページ情報
| タイトル | 2項係数の2乗和 |
| URL | https://www.nomuramath.com/y6xkt7ax/ |
| SNSボタン |
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]
飛び飛びの2項定理
\[
\sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\}
\]
一般ヴァンデルモンドの畳み込み定理
\[
\sum_{k_{1}+\cdots+k_{p}=m}\prod_{j=1}^{p}C\left(n_{j},k_{j}\right)=C\left(\sum_{j=1}^{p}n_{j},m\right)
\]

