共分散の基本的性質
\(X,Y\)を確率変数、\(a,b\)を定数とする。
(1)
\[ Cov(X,Y)=Cov(Y,X) \](2)
\[ Cov(X,Y+a)=Cov(X,Y) \](3)
\[ Cov(X,aY)=aCov(X,Y) \](1)
\begin{align*} Cov(X,Y) & =E\left(\left(X-E(X)\right)\left(Y-E(Y)\right)\right)\\ & =Cov(Y,X) \end{align*}(2)
\begin{align*} Cov(X,Y+a) & =E(X(Y+a))-E(X)E(Y+a)\\ & =E(XY)+aE(X)-E(X)E(Y)+aE(X)\\ & =E(XY)-E(X)E(Y)\\ & =Cov(X,Y) \end{align*}(3)
\begin{align*} Cov(X,aY) & =E(XaY)-E(X)E(aY)\\ & =a\left(E(XY)-E(X)E(Y)\right)\\ & =aCov(X,Y) \end{align*}ページ情報
タイトル | 共分散の基本的性質 |
URL | https://www.nomuramath.com/ugczz9jg/ |
SNSボタン |
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
相加平均・相乗平均・調和平均・一般化平均の定義
\[
\mu_{A}=\frac{1}{n}\sum_{k=1}^{n}x_{k}
\]
中心極限定理
\[
\lim_{n\rightarrow\infty}\frac{1}{\sqrt{n}\sigma}\left(\sum_{i=1}^{n}X_{i}-n\mu\right)=N(0,1)
\]