独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
タイトル | 独立と無相関の定義 |
URL | https://www.nomuramath.com/w7lzj5zq/ |
SNSボタン |
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
相補誤差関数と虚数誤差関数の表示
\[
erfc(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt
\]
独立と無相関の関係
\[
\text{独立}\Rightarrow\text{無相関}
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]