対数関数のn回積分

対数関数のn回積分
\[ \left(\log x\right)^{(-n)}=\left(\log x-H_{n}\right)\frac{x^{n}}{n!} \]

\(n=0\)のとき

明らかに成立。

\(n=k\)のとき成立すると仮定する

\begin{align*} \left(\log x\right)^{(-(k+1))} & =\int\left(\log x-H_{k}\right)\frac{x^{k}}{k!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\int\frac{1}{x}\frac{x^{k+1}}{(k+1)!}dx\\ & =\left(\log x-H_{k}\right)\frac{x^{k+1}}{(k+1)!}-\frac{x^{k+1}}{(k+1)(k+1)!}\\ & =\left(\log x-H_{k}-\frac{1}{k+1}\right)\frac{x^{k+1}}{(k+1)!}\\ & =\left(\log x-H_{k+1}\right)\frac{x^{k+1}}{(k+1)!} \end{align*} となるので\(n=k+1\)でも成立

(*)

故に与式は成り立つ。

ページ情報
タイトル
対数関数のn回積分
URL
https://www.nomuramath.com/kgwgsfey/
SNSボタン