2項係数とベータ関数の関係
2項係数とベータ関数の関係
(1)
\[ B(x,y)=\frac{x+y}{xyC(x+y,x)} \](2)
\[ C(x,y)=\frac{1}{(x+1)B(x-y+1,y+1)} \](3)
\[ B(x,y)=\frac{-\pi}{x\sin(\pi x)B(x+y,-x)} \](4)
\[ C(x,y)=-\frac{y\sin(\pi y)}{C(x-y,x)\pi} \](5)
\[ B(x,y)=\frac{C(y-1,-x)\pi}{\sin(\pi x)} \](6)
\[ C(x.y)=\frac{-B(x+1,-y)\sin(\pi y)}{\pi} \](1)
\begin{align*} B(x,y) & =\frac{(x-1)!(y-1)!}{(x+y-1)!}\\ & =\frac{x+y}{xy}\frac{x!y!}{(x+y)!}\\ & =\frac{x+y}{xyC(x+y,x)} \end{align*}(2)
\begin{align*} C(x,y) & =\frac{x!}{y!(x-y)!}\\ & =\frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}\\ & =\frac{1}{x+1}\frac{\Gamma(x+2)}{\Gamma(y+1)\Gamma(x-y+1)}\\ & =\frac{1}{(x+1)B(x-y+1,y+1)} \end{align*}(3)
\begin{align*} B(x,y) & =\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\\ & =\Gamma(x)\Gamma(1-x)\frac{\Gamma(y)}{-x\Gamma(-x)\Gamma(x+y)}\\ & =\frac{-\pi}{x\sin(\pi x)B(x+y,-x)} \end{align*}(4)
\begin{align*} C(x,y) & =\frac{\Gamma(x+1)}{\Gamma(x-y+1)\Gamma(y+1)}\\ & =\frac{\Gamma(x+1)\Gamma(1-y)}{\Gamma(x-y+1)\Gamma(y+1)\Gamma(1-y)}\\ & =\frac{1}{C(x-y,x)y\Gamma(y)\Gamma(1-y)}\\ & =\frac{\sin(\pi y)}{C(x-y,x)\pi y} \end{align*}(5)
\begin{align*} B(x,y) & =\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\\ & =\frac{(y-1)!}{(x+y-1)!(-x)!}\Gamma(x)\Gamma(1-x)\\ & =\frac{C(y-1,-x)\pi}{\sin(\pi x)} \end{align*}(6)
\begin{align*} C(x.y) & =\frac{x!}{y!(x-y)!}\\ & =\frac{\Gamma(x+1)\Gamma(1-y)}{y\Gamma(y)\Gamma(1-y)\Gamma(x-y+1)}\\ & =\frac{-y\Gamma(x+1)\Gamma(-y)}{y\Gamma(y)\Gamma(1-y)\Gamma(x-y+1)}\\ & =\frac{-B(x+1,-y)\sin(\pi y)}{\pi} \end{align*}ページ情報
タイトル | 2項係数とベータ関数の関係 |
URL | https://www.nomuramath.com/l2u2rt4a/ |
SNSボタン |
3角形の面積と位置ベクトル
\[
\boldsymbol{X}=\frac{p\boldsymbol{A}+q\boldsymbol{B}+r\boldsymbol{C}}{p+q+r}
\]
逆数の偏角と対数
\[
\Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}
\]
連結・弧状連結の連続写像による像・逆像
連結・弧状連結な部分集合の連続写像による像は連結・弧状連結となる。
同値類・商集合・商写像の定義
\[
X/\sim=\left\{ C\left(a\right);a\in X\right\}
\]