ウォリス積分の定義
\(n\in\mathbb{N}_{0}\)とする。
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
ページ情報
タイトル | ウォリス積分の定義 |
URL | https://www.nomuramath.com/pf2syylr/ |
SNSボタン |
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
logの2乗の級数表示
\[
\log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1}
\]
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]