ウォリス積分の同表示
ウォリス積分は以下の値に等しい
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\cos^{n}\left(\theta-\frac{\pi}{2}\right)d\theta\\
& =\int_{0}^{\frac{\pi}{2}}\cos^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリス積分の同表示 |
URL | https://www.nomuramath.com/vyufzw14/ |
SNSボタン |
ライプニッツ級数
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]