ウォリス積分の同表示
ウォリス積分は以下の値に等しい
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\cos^{n}\left(\theta-\frac{\pi}{2}\right)d\theta\\
& =\int_{0}^{\frac{\pi}{2}}\cos^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリス積分の同表示 |
URL | https://www.nomuramath.com/vyufzw14/ |
SNSボタン |
二項係数とベータ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}4^{n}B(n,n)=2\sqrt{\pi}
\]
円周率
円周率πの定義と積分での表示。
コーシーの関数方程式と関数方程式の基本
\[
f(x+y)=f(x)+f(y)
\]
ウォリス積分を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}}
\]