第3種・第4種チェビシェフ多項式の定義
第3種・第4種チェビシェフ多項式の定義
第3種チェビシェフ多項式
\[ V_{n}(\cos t)=\frac{\cos\left(\left(n+\frac{1}{2}\right)t\right)}{\cos\left(\frac{1}{2}t\right)} \] \[ V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第4種チェビシェフ多項式
\[ W_{n}(\cos t)=\frac{\sin\left(\left(n+\frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)} \] \[ W_{n}(x)=\frac{\sin\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\sin\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第3種チェビシェフ多項式
\[ V_{n}(\cos t)=\frac{\cos\left(\left(n+\frac{1}{2}\right)t\right)}{\cos\left(\frac{1}{2}t\right)} \] \[ V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第4種チェビシェフ多項式
\[ W_{n}(\cos t)=\frac{\sin\left(\left(n+\frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)} \] \[ W_{n}(x)=\frac{\sin\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\sin\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
ページ情報
タイトル | 第3種・第4種チェビシェフ多項式の定義 |
URL | https://www.nomuramath.com/yd2na8ru/ |
SNSボタン |
チェビシェフ多項式の直交性
\[
\int_{-1}^{1}T_{m}(x)T_{n}(x)\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\delta_{mn}+\delta_{0m}\delta_{0n}\right)
\]
第2種チェビシェフ多項式の因数分解
\[
U_{2n-1}(x)=2U_{n-1}(x)T_{n}(x)
\]
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
第3種・第4種チェビシェフ多項式の漸化式
\[
V_{k+1}(x)=2xV_{k}(x)-V_{k-1}(x)
\]