(*)チェビシェフ多項式のロドリゲス公式
チェビシェフ多項式のロドリゲス公式
(1)
\[ T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}} \](2)
\[ U_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}(n+1)}{2^{n+1}\Gamma\left(n+\frac{3}{2}\right)\sqrt{1-x^{2}}}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n+\frac{1}{2}} \]略
ページ情報
タイトル | (*)チェビシェフ多項式のロドリゲス公式 |
URL | https://www.nomuramath.com/igvbpmrb/ |
SNSボタン |
第1種・第2種と第3種チェビシェフ多項式同士の関係
\[
V(-x)=(-1)^{n}W_{n}(x)
\]
チェビシェフの微分方程式
\[
\left(1-x^{2}\right)T_{n}''(x)-xT_{n}'(x)+n^{2}T_{n}(x)=0
\]
チェビシェフ多項式の級数表示
\[
T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right)
\]
チェビシェフ多項式の母関数
\[
\sum_{k=0}^{\infty}T_{k}(x)t^{k}=\frac{1-tx}{1-2tx+t^{2}}
\]