チェビシェフ多項式の別表記
チェビシェフ多項式の別表記
(1)
\[ T_{n}(x)=\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \](2)
\[ U_{n-1}(x)=\frac{1}{2i\sqrt{1-x^{2}}}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}-\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \](1)
\begin{align*} T_{n}(x) & =\cos\left(n\cos^{\bullet}x\right)\\ & =\frac{1}{2}\left(e^{in\cos^{\bullet}x}+e^{-in\cos^{\bullet}x}\right)\\ & =\frac{1}{2}\left(\left(e^{i\cos^{\bullet}x}\right)^{n}+\left(e^{-i\cos^{\bullet}x}\right)^{n}\right)\\ & =\frac{1}{2}\left(\left(\cos\cos^{\bullet}x+i\sin\cos^{\bullet}x\right)^{n}+\left(\cos\cos^{\bullet}x-i\sin\cos^{\bullet}x\right)^{n}\right)\\ & =\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \end{align*}(2)
\begin{align*} U_{n-1}(x) & =\frac{\sin(n\cos^{\bullet}x)}{\sin\cos^{\bullet}x}\\ & =\frac{1}{2i\sqrt{1-x^{2}}}\left(e^{in\cos^{\bullet}x}-e^{-in\cos^{\bullet}x}\right)\\ & =\frac{1}{2i\sqrt{1-x^{2}}}\left(\left(\cos\cos^{\bullet}x+i\sin\cos^{\bullet}x\right)^{n}-\left(\cos\cos^{\bullet}x-i\sin\cos^{\bullet}x\right)^{n}\right)\\ & =\frac{1}{2i\sqrt{1-x^{2}}}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}-\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \end{align*}ページ情報
タイトル | チェビシェフ多項式の別表記 |
URL | https://www.nomuramath.com/f28r2kv8/ |
SNSボタン |
(*)チェビシェフ多項式の超幾何表示
\[
T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right)
\]
チェビシェフ多項式の直交性
\[
\int_{-1}^{1}T_{m}(x)T_{n}(x)\frac{dx}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\left(\delta_{mn}+\delta_{0m}\delta_{0n}\right)
\]
第1種チェビシェフ多項式と第2種チェビシェフ多項式の関係
\[
nU_{n-1}(x)=T_{n}'(x)
\]
第3種・第4種チェビシェフ多項式の定義
\[
V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)}
\]