分母に2乗根と3乗根の積分
\[
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx=2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)+C
\]
\begin{align*}
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx & =\int\frac{1}{\left(x^{\frac{1}{6}}\right)^{3}+\left(x^{\frac{1}{6}}\right)^{2}}dx\\
& =6\int\frac{t^{5}}{t^{3}+t^{2}}dt\qquad,\qquad t=x^{\frac{1}{6}}\\
& =6\int\frac{t^{3}}{t+1}dt\\
& =6\int\left(t^{2}-t+1-\frac{1}{t+1}\right)dt\\
& =2t^{3}-3t^{2}+6t-6\log\left(1+t\right)+C\\
& =2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)+C
\end{align*}
ページ情報
タイトル | 分母に2乗根と3乗根の積分 |
URL | https://www.nomuramath.com/dr9jf54q/ |
SNSボタン |
ガンマ関数を2つ含む定積分でカタラン定数が出てきます
\[
\int_{0}^{\frac{1}{2}}\Gamma\left(1-x\right)\Gamma\left(1+x\right)dx=?
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]
指数関数を分母と分子に含む対数の定積分
\[
\int_{0}^{\infty}\log\left(\frac{e^{x}-1}{e^{x}+1}\right)dx=?
\]
気付かないと解けないかも
\[
\int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=?
\]