対数のルート積分
\[
\int\log^{\frac{1}{2}}xdx=x\log^{\frac{1}{2}}x-\frac{\sqrt{\pi}}{2}erfi\left(\log^{\frac{1}{2}}x\right)+C
\]
\begin{align*}
\int\log^{\frac{1}{2}}xdx & =x\log^{\frac{1}{2}}x-\frac{1}{2}\int\log^{-\frac{1}{2}}xdx\\
& =x\log^{\frac{1}{2}}x-\int e^{t^{2}}dt+C\cmt{t=\log^{\frac{1}{2}}x}\\
& =x\log^{\frac{1}{2}}x-\frac{\sqrt{\pi}}{2}erfi(t)+C\\
& =x\log^{\frac{1}{2}}x-\frac{\sqrt{\pi}}{2}erfi\left(\log^{\frac{1}{2}}x\right)+C
\end{align*}
ページ情報
タイトル | 対数のルート積分 |
URL | https://www.nomuramath.com/dvl6t0gy/ |
SNSボタン |
分母にxの20乗がある定積分
\[
\int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=?
\]
気付かないと解けないかも
\[
\int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=?
\]
複雑な2重根号を含む定積分
\[
\int_{-\frac{1}{2}}^{\frac{1}{2}}\sqrt{x^{2}+1+\sqrt{x^{4}+x^{2}+1}}dx=?
\]
分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z\pm1\right)\sqrt{z^{2}-1}}dz=\frac{\sqrt{z^{2}-1}}{\pm z+1}+C
\]