ζ(2)の値
ζ(2)の値
\[ \sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6} \]
\[ \sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6} \]
\begin{align*}
\sum_{k=1}^{\infty}\frac{1}{k^{2}} & =\sum_{k=1}^{\infty}\frac{1}{(2k)^{2}}+\sum_{k=1}^{\infty}\frac{1}{(2k-1)^{2}}\\
& =\frac{1}{4}\sum_{k=1}^{\infty}\frac{1}{k^{2}}+\sum_{k=1}^{\infty}\frac{1}{(2k-1)^{2}}\\
& =\frac{4}{3}\sum_{k=1}^{\infty}\frac{1}{(2k-1)^{2}}\\
& =\frac{4}{3}\sum_{k=0}^{\infty}\frac{1}{(2k+1)^{2}}\\
& =\frac{4}{3}\sum_{k=0}^{\infty}\frac{1}{(2k+1)}\int_{0}^{1}x^{2k}dx\\
& =\frac{4}{3}\sum_{k=0}^{\infty}\frac{1}{(2k+1)}\left(\left[x^{2k+1}\log x\right]_{0}^{1}-\left(2k+1\right)\int_{0}^{1}x^{2k}\log xdx\right)\\
& =-\frac{4}{3}\sum_{k=0}^{\infty}\int_{0}^{1}x^{2k}\log xdx\\
& =-\frac{4}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\log xdx\\
& =-\frac{2}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\log x^{2}dx\\
& =-\frac{2}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\left[\log\frac{1+x^{2}y^{2}}{1+y^{2}}\right]_{y=0}^{y=\infty}dx\\
& =-\frac{2}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\int_{0}^{\infty}\frac{\partial}{\partial y}\left(\log\frac{1+x^{2}y^{2}}{1+y^{2}}\right)dydx\\
& =-\frac{4}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\int_{0}^{\infty}\left(\frac{x^{2}y}{1+x^{2}y^{2}}-\frac{y}{1+y^{2}}\right)dydx\\
& =-\frac{4}{3}\int_{0}^{1}\frac{1}{1-x^{2}}\int_{0}^{\infty}\frac{-y(1-x^{2})}{\left(1+x^{2}y^{2}\right)\left(1+y^{2}\right)}dydx\\
& =\frac{4}{3}\int_{0}^{1}\int_{0}^{\infty}\frac{y}{\left(1+x^{2}y^{2}\right)\left(1+y^{2}\right)}dydx\\
& =\frac{4}{3}\int_{0}^{\infty}\frac{y}{1+y^{2}}\int_{0}^{1}\frac{1}{1+x^{2}y^{2}}dxdy\\
& =\frac{4}{3}\int_{0}^{\infty}\frac{y}{1+y^{2}}\left[\frac{1}{y}\tan^{\bullet}\left(xy\right)\right]_{x=0}^{x=1}dy\\
& =\frac{4}{3}\int_{0}^{\infty}\frac{\tan^{\bullet}y}{1+y^{2}}dy\\
& =\frac{4}{3}\int_{0}^{\infty}\tan^{\bullet}yd\tan^{\bullet}y\\
& =\frac{2}{3}\left[\tan^{\bullet,2}y\right]_{0}^{\infty}\\
& =\frac{2}{3}\left(\frac{\pi}{2}\right)^{2}\\
& =\frac{\pi^{2}}{6}
\end{align*}
ページ情報
タイトル | ζ(2)の値 |
URL | https://www.nomuramath.com/c4jalee1/ |
SNSボタン |
リーマン・ゼータ関数とディレクレ・イータ関数の導関数の特殊値
\[
\zeta'\left(0\right)=-\Log\sqrt{2\pi}
\]
リーマン・ゼータ関数とディリクレ・イータ関数の定義
\[
\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]