tanの平方根の積分
tanの平方根の積分
\[ \int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C \]
\[ \int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C \]
\begin{align*}
\int\sqrt{\tan x}dx & =2\int\frac{t^{2}}{t^{4}+1}dt\cmt{t=\sqrt{\tan x}}\\
& =\frac{1}{\sqrt{2}}\int t^{2}\left(-\frac{t-\sqrt{2}}{t^{2}-\sqrt{2}t+1}+\frac{t+\sqrt{2}}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(-t+\frac{t}{t^{2}-\sqrt{2}t+1}+t-\frac{t}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{t}{t^{2}-\sqrt{2}t+1}-\frac{t}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{\frac{1}{2}\left(t^{2}-\sqrt{2}t+1\right)'}{t^{2}-\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{t^{2}-\sqrt{2}t+1}-\frac{\frac{1}{2}\left(t^{2}+\sqrt{2}t+1\right)'}{t^{2}+\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{t^{2}+\sqrt{2}t+1}\right)dt\\
& =\frac{1}{\sqrt{2}}\int\left(\frac{\frac{1}{2}\left(t^{2}-\sqrt{2}t+1\right)'}{t^{2}-\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{\left(t-\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}-\frac{\frac{1}{2}\left(t^{2}+\sqrt{2}t+1\right)'}{t^{2}+\sqrt{2}t+1}+\frac{\sqrt{2}}{2}\frac{1}{\left(t+\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}\right)dt\\
& =\frac{1}{\sqrt{2}}\left(\frac{1}{2}\log\left(t^{2}-\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\sqrt{2}\tan^{\bullet}\left(\sqrt{2}t-1\right)-\frac{1}{2}\log\left(t^{2}+\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\sqrt{2}\tan^{\bullet}\left(\sqrt{2}t+1\right)\right)+C\\
& =\frac{\sqrt{2}}{4}\log\left(t^{2}-\sqrt{2}t+1\right)-\frac{\sqrt{2}}{4}\log\left(t^{2}+\sqrt{2}t+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2}t-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2}t+1\right)+C\\
& =\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\end{align*}
ページ情報
タイトル | tanの平方根の積分 |
URL | https://www.nomuramath.com/xhw9ax46/ |
SNSボタン |
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
ガンマ関数を2つ含む定積分でカタラン定数が出てきます
\[
\int_{0}^{\frac{1}{2}}\Gamma\left(1-x\right)\Gamma\left(1+x\right)dx=?
\]
分母に2乗根と3乗根の積分
\[
\int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx=2x^{\frac{1}{2}}-3x^{\frac{1}{3}}+6x^{\frac{1}{6}}-6\log\left(1+x^{\frac{1}{6}}\right)
\]
イータ関数の導関数がでてきます
\[
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=?
\]