ゼータ関数の交代級数
ゼータ関数の交代級数
\[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
\[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
\begin{align*}
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right) & =\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}\left(\frac{j}{j^{2k+1}}-\frac{1}{j^{2k+1}}\right)\\
& =\sum_{k=1}^{\infty}\sum_{j=2}^{\infty}\left(\frac{j-1}{j^{2k+1}}\right)\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}}\sum_{k=1}^{\infty}\left(\frac{1}{j^{2}}\right)^{k-1}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}}\frac{1}{1-\frac{1}{j^{2}}}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j^{3}-j}\\
& =\sum_{j=2}^{\infty}\frac{j-1}{j(j+1)(j-1)}\\
& =\sum_{j=2}^{\infty}\frac{1}{j(j+1)}\\
& =\sum_{j=2}^{\infty}\left(\frac{1}{j}-\frac{1}{j+1}\right)\\
& =\frac{1}{2}
\end{align*}
ページ情報
| タイトル | ゼータ関数の交代級数 |
| URL | https://www.nomuramath.com/rjcjvzw7/ |
| SNSボタン |
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
リーマン・ゼータ関数の解析接続による非負整数値
\[
\zeta\left(-n\right)=\left(-1\right)^{n}\frac{B_{n+1}}{n+1}
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]

