log₂3とlog₃5の大小比較
log₂3とlog₃5の大小比較
\[ \log_{2}3\lesseqgtr\log_{3}5 \]
\[ \log_{2}3\lesseqgtr\log_{3}5 \]
(0)
\begin{align*} \log_{2}3-\log_{3}5 & =\log_{8}27-\log_{9}25\\ & >\log_{9}27-\log_{9}25\\ & >0 \end{align*} これより、\[ \log_{3}5<\log_{2}3 \]
(0)-2
\begin{align*} \log_{2}3-\log_{3}5 & =\frac{1}{2}\left(\log_{2}3^{2}-\log_{3}5^{2}\right)\\ & =\frac{1}{2}\left(\log_{2}9-\log_{3}25\right)\\ & >\frac{1}{2}\left(\log_{2}8-\log_{3}27\right)\\ & =\frac{1}{2}\left(\log_{2}2^{3}-\log_{3}3^{3}\right)\\ & =0 \end{align*} これより、\[ \log_{2}3>\log_{3}5 \]
ページ情報
タイトル | log₂3とlog₃5の大小比較 |
URL | https://www.nomuramath.com/tmtjt0uw/ |
SNSボタン |
3変数3次対称式の因数分解
\[
\left(x+y+z\right)^{3}-\left(x^{3}+y^{3}+z^{3}\right)\text{を因数分解せよ}
\]
2の34乗と5の14乗の大小関係
\[
2^{34}\lesseqgtr5^{14}
\]
展開はしないほうがいいです
\[
\left(x+y\right)^{2}\left(xy-1\right)+1\text{を因数分解}
\]
4次式の点の軌跡
点$\left(t^{2}+1,t^{4}+2t^{2}\right)$の軌跡