ルートの中に2乗を含む積分
ルートの中に2乗を含む積分
(1)
\[ \int f\left(\sqrt{a^{2}-x^{2}}\right)dx=a\int f\left(a\cos t\right)\cos tdt\cnd{x=a\sin t} \](1)-2
\[ \int f\left(\sqrt{a^{2}-x^{2}}\right)dx=a\int f\left(\frac{a}{\cosh t}\right)\frac{1}{\cosh^{2}t}dt\cnd{x=a\tanh t} \](2)
\[ \int f\left(\sqrt{a^{2}+x^{2}}\right)dx=a\int f\left(a\cosh t\right)\cosh tdt\cnd{x=a\sinh t} \](2)-2
\[ \int f\left(\sqrt{a^{2}+x^{2}}\right)dx=a\int f\left(\frac{a}{\cos t}\right)\frac{1}{\cos^{2}t}dt\cnd{x=a\tan t} \](2)-3
\[ \int f\left(\sqrt{a^{2}+x^{2}}\right)dx=-\frac{1}{2}\int f\left(\frac{t^{2}+a^{2}}{2t}\right)\frac{t^{2}+a^{2}}{t^{2}}dt\cnd{t=x+\sqrt{x^{2}+a^{2}}} \](3)
\[ \int f\left(\sqrt{x^{2}-a^{2}}\right)dx=a\int f\left(a\sinh t\right)\sinh tdt\cnd{x=a\cosh t} \](3)-2
\[ \int f\left(\sqrt{x^{2}-a^{2}}\right)dx=-a\int f\left(\frac{a}{\sinh t}\right)\frac{1}{\sinh^{2}t}dt\cnd{x=a\tanh^{-1}t} \](3)-3
\[ \int f\left(\sqrt{x^{2}-a^{2}}\right)dx=\frac{1}{2}\int f\left(\frac{t^{2}-a^{2}}{2t}\right)\frac{t^{2}-a^{2}}{t}dt\cnd{t=x+\sqrt{x^{2}-a^{2}}} \](1)
\begin{align*} \int f\left(\sqrt{a^{2}-x^{2}}\right)dx & =\int f\left(\sqrt{a^{2}-a^{2}\sin^{2}t}\right)d\left(a\sin t\right)\cnd{x=a\sin t}\\ & =a\int f\left(a\cos t\right)\cos tdt \end{align*}(1)-2
\begin{align*} \int f\left(\sqrt{a^{2}-x^{2}}\right)dx & =\int f\left(\sqrt{a^{2}-a^{2}\tanh^{2}t}\right)d\left(a\tanh t\right)\cnd{x=a\tanh t}\\ & =a\int f\left(\frac{a}{\cosh t}\right)\frac{1}{\cosh^{2}t}dt \end{align*}(2)
\begin{align*} \int f\left(\sqrt{a^{2}+x^{2}}\right)dx & =\int f\left(\sqrt{a^{2}+a^{2}\sinh^{2}t}\right)d\left(a\sinh t\right)\cnd{x=a\sinh t}\\ & =a\int f\left(a\cosh t\right)\cosh tdt \end{align*}(2)-2
\begin{align*} \int f\left(\sqrt{a^{2}+x^{2}}\right)dx & =\int f\left(\sqrt{a^{2}+a^{2}\tan^{2}t}\right)d\left(a\tan t\right)\cnd{x=a\tan t}\\ & =a\int f\left(\frac{a}{\cos t}\right)\frac{1}{\cos^{2}t}dt \end{align*}(2)-3
\begin{align*} \int f\left(\sqrt{a^{2}+x^{2}}\right)dx & =\int f\left(\left|\frac{t^{2}+a^{2}}{2t}\right|\right)d\left(\frac{a^{2}-t^{2}}{2t}\right)\cnd{t=x+\sqrt{x^{2}+a^{2}}}\\ & =-\frac{1}{2}\int f\left(\frac{t^{2}+a^{2}}{2t}\right)\frac{t^{2}+a^{2}}{t^{2}}dt \end{align*}(3)
\begin{align*} \int f\left(\sqrt{x^{2}-a^{2}}\right)dx & =\int f\left(\sqrt{a^{2}\cosh^{2}t-a^{2}}\right)d\left(a\cosh t\right)\cnd{x=a\cosh t}\\ & =a\int f\left(a\sinh t\right)\sinh tdt \end{align*}(3)-2
\begin{align*} \int f\left(\sqrt{x^{2}-a^{2}}\right)dx & =\int f\left(\sqrt{a^{2}\tanh^{-2}-a^{2}}\right)d\left(a\tanh^{-1}t\right)\cnd{x=a\tanh^{-1}t}\\ & =-a\int f\left(\frac{a}{\sinh t}\right)\frac{1}{\sinh^{2}t}dt \end{align*}(3)-3
\begin{align*} \int f\left(\sqrt{x^{2}-a^{2}}\right)dx & =\int f\left(\left|\frac{t^{2}-a^{2}}{2t}\right|\right)d\left(\frac{t^{2}+a^{2}}{2t}\right)\cnd{t=x+\sqrt{x^{2}-a^{2}}}\\ & =\frac{1}{2}\int f\left(\frac{t^{2}-a^{2}}{2t}\right)\frac{t^{2}-a^{2}}{t}dt \end{align*}ページ情報
タイトル | ルートの中に2乗を含む積分 |
URL | https://www.nomuramath.com/tfrifd9l/ |
SNSボタン |
逆関数の微分
\[
\frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1}
\]
3角関数の関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}f\left(\cos x\right)dx=\int_{0}^{\frac{\pi}{2}}f\left(\sin x\right)dx
\]
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
部分積分と繰り返し部分積分
\[
\int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx
\]