微分・原始関数・定積分・不定積分の定義
微分・原始関数・定積分・不定積分の定義
(1)微分の定義
\[ \frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \](2)原始関数
微分すると\(f\left(x\right)\)となる関数を原始関数といい、\(\int f\left(x\right)dx\)と表す。すなわち\(f\left(x\right)\)の原始関数は逆微分をしたものである。(3)定積分
閉区間\(I\)で可積分関数\(f\left(x\right)\)があるとする。このとき\(y=f\left(x\right),y=0,x=a,x=b\)で囲まれた部分の面積を\(\int_{a}^{b}f\left(x\right)dx\)で表し、これを定積分という。(4)不定積分
閉区間\(I\)で可積分関数\(f\left(x\right)\)があるとする。このとき\(I\)内の定数\(a\)から変数\(x\)までの定積分\(\int_{a}^{x}f\left(x\right)dx\)を\(f\left(x\right)\)の不定積分という。ページ情報
タイトル | 微分・原始関数・定積分・不定積分の定義 |
URL | https://www.nomuramath.com/ibdk51vm/ |
SNSボタン |
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]
逆関数の微分
\[
\frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1}
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]
微分形接触型積分
\[
\int f'(g(x))g'(x)dx=f(g(x))
\]