階乗冪(上昇階乗・下降階乗)の母関数
階乗冪(上昇階乗・下降階乗)の母関数
\(n\in\mathbb{N}_{0}\)とする。
通常型母関数
\[ \sum_{k=0}^{\infty}P(k,n)x^{k}=\frac{x^{n}n!}{(1-x)^{n+1}} \]
\[ \sum_{k=0}^{\infty}Q(k,n)x^{k}=\frac{n!}{\left(1-x\right)^{n+1}}x \]
\[ \sum_{k=0}^{\infty}P(\alpha,k)x^{k}=0 \]
\[ \sum_{k=0}^{\infty}Q(\alpha,k)x^{k}=0 \]
指数型母関数
\(n\in\mathbb{N}_{0}\)とする。
通常型母関数
(1)
\(x<1\)とする。\[ \sum_{k=0}^{\infty}P(k,n)x^{k}=\frac{x^{n}n!}{(1-x)^{n+1}} \]
(2)
\(x<1\)とする。\[ \sum_{k=0}^{\infty}Q(k,n)x^{k}=\frac{n!}{\left(1-x\right)^{n+1}}x \]
(3)
\(x=0\)とする。\[ \sum_{k=0}^{\infty}P(\alpha,k)x^{k}=0 \]
(4)
\(x=0\)とする。\[ \sum_{k=0}^{\infty}Q(\alpha,k)x^{k}=0 \]
指数型母関数
(5)
\[ \sum_{k=0}^{\infty}P(\alpha,k)\frac{x^{k}}{k!}=\left(1+x\right)^{\alpha} \](6)
\[ \sum_{k=0}^{\infty}Q(\alpha,k)\frac{x^{k}}{k!}=\left(1-x\right)^{-\alpha} \](7)
\[ \sum_{k=0}^{\infty}P(k,\alpha)\frac{x^{k}}{k!}=x^{\alpha}e^{x}\left(1-\frac{\Gamma\left(-\alpha,x\right)}{\Gamma\left(-\alpha\right)}\right) \](8)
\[ \sum_{k=0}^{\infty}Q(k,\alpha)\frac{x^{k}}{k!}=x\alpha!F(\alpha+1;2;x) \](1)
\begin{align*} \sum_{k=0}^{\infty}P(k,n)x^{k} & =\sum_{k=0}^{\infty}x^{n}\frac{d^{n}}{dx^{n}}x^{k}\\ & =x^{n}\frac{d^{n}}{dx^{n}}\sum_{k=0}^{\infty}x^{k}\\ & =x^{n}\frac{d^{n}}{dx^{n}}\frac{1}{1-x}\\ & =\frac{x^{n}n!}{(1-x)^{n+1}} \end{align*}(2)
\begin{align*} \sum_{k=0}^{\infty}Q(k,n)x^{k} & =\sum_{k=0}^{\infty}P(k+n-1,n)x^{k}\\ & =\sum_{k=0}^{\infty}x\frac{d^{n}}{dx^{n}}x^{k+n-1}\\ & =x\frac{d^{n}}{dx^{n}}x^{n-1}\sum_{k=0}^{\infty}x^{k}\\ & =x\frac{d^{n}}{dx^{n}}\frac{x^{n-1}}{1-x}\\ & =x\sum_{k=0}^{n}C(n,k)\frac{d^{k}}{dx^{k}}x^{n-1}\frac{d^{n-k}}{dx^{n-k}}\left(1-x\right)^{-1}\\ & =x\sum_{k=0}^{n}C(n,k)P(n-1,k)x^{n-k-1}\left(n-k\right)!\left(1-x\right)^{-(n-k)-1}\\ & =\frac{x^{n}}{\left(1-x\right)^{n+1}}\sum_{k=0}^{n}C(n,k)P(n-1,k)\left(n-k\right)!\left(\frac{1}{x}-1\right)^{k}\\ & =\frac{x^{n}}{\left(1-x\right)^{n+1}}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\frac{(n-1)!}{(n-k-1)!}\left(n-k\right)!\left(\frac{1}{x}-1\right)^{k}\\ & =\frac{n!x^{n}}{\left(1-x\right)^{n+1}}\sum_{k=0}^{n}C(n-1,k)\left(\frac{1}{x}-1\right)^{k}\\ & =\frac{n!x^{n}}{\left(1-x\right)^{n+1}}\left(\frac{1}{x}\right)^{n-1}\\ & =\frac{n!}{\left(1-x\right)^{n+1}}x \end{align*}(3)
\begin{align*} \sum_{k=0}^{\infty}P(\alpha,k)x^{k} & =\sum_{k=0}^{\infty}\frac{\alpha!}{\left(\alpha-k\right)!}x^{k}\\ & =\alpha!x^{\alpha}\sum_{k=0}^{\infty}\frac{1}{\left(\alpha-k\right)!}\left(\frac{1}{x}\right)^{\alpha-k}\\ & =\alpha!\sum_{k=0}^{\infty}\frac{x^{k}}{\left(\alpha-k\right)!}\\ & =\alpha!\sum_{k=0}^{\infty}\frac{\sin\left(\pi(\alpha-k)\right)(1-\alpha+k)!x^{k}}{\pi}\\ & =0 \end{align*}(4)
\begin{align*} \sum_{k=0}^{\infty}Q(\alpha,k)x^{k} & =\sum_{k=0}^{\infty}\frac{(\alpha+k-1)!}{(\alpha-1)!}x^{k}\\ & =\frac{1}{x^{\alpha-1}(\alpha-1)!}\sum_{k=0}^{\infty}(\alpha+k-1)!x^{\alpha+k-1}\\ & =0 \end{align*}(5)
\begin{align*} \sum_{k=0}^{\infty}P(\alpha,k)\frac{x^{k}}{k!} & =\sum_{k=0}^{\infty}C(\alpha,k)x^{k}1^{\alpha-k}\\ & =\left(1+x\right)^{\alpha} \end{align*}(6)
\begin{align*} \sum_{k=0}^{\infty}Q(\alpha,k)\frac{x^{k}}{k!} & =\sum_{k=0}^{\infty}(-1)^{k}P(-\alpha,k)\frac{x^{k}}{k!}\\ & =\sum_{k=0}^{\infty}C(-\alpha,k)\left(-x\right)^{k}1^{-\alpha-k}\\ & =\left(1-x\right)^{-\alpha} \end{align*}(7)
\begin{align*} \sum_{k=0}^{\infty}P(k,\alpha)\frac{x^{k}}{k!} & =\sum_{k=0}^{\infty}\frac{k!}{\left(k-\alpha\right)!}\frac{x^{k}}{k!}\\ & =x^{\alpha}\sum_{k=0}^{\infty}\frac{x^{k-\alpha}}{\left(k-\alpha\right)!}\\ & =x^{\alpha}e^{x}\left(1-\frac{\Gamma\left(-\alpha,x\right)}{\Gamma\left(-\alpha\right)}\right) \end{align*}(8)
\begin{align*} \sum_{k=0}^{\infty}Q(k,\alpha)\frac{x^{k}}{k!} & =\sum_{k=0}^{\infty}\frac{(k+\alpha-1)!}{(k-1)!}\frac{x^{k}}{k!}\\ & =\sum_{k=1}^{\infty}\frac{(k+\alpha-1)!}{(k-1)!}\frac{x^{k}}{k!}\\ & =\sum_{k=0}^{\infty}\frac{(k+\alpha)!}{k!}\frac{x^{k+1}}{(k+1)!}\\ & =x\alpha!\sum_{k=0}^{\infty}\frac{Q(\alpha+1,k)}{Q(2,k)}\frac{x^{k}}{k!}\\ & =x\alpha!F(\alpha+1;2;x) \end{align*}ページ情報
タイトル | 階乗冪(上昇階乗・下降階乗)の母関数 |
URL | https://www.nomuramath.com/vkuw9g36/ |
SNSボタン |
階乗冪(上昇階乗・下降階乗)とその逆数の値が0となるとき
\[
\forall m,n\in\mathbb{Z},0\leq m<n\Leftrightarrow P\left(m,n\right)=0
\]
階乗冪(下降階乗・上昇階乗)の1/2値
\[
P\left(-\frac{1}{2},n\right)=\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!}
\]
階乗冪(上昇階乗・下降階乗)の1項間漸化式
\[
P(x+1,y)=\frac{x+1}{x-y+1}P(x,y)
\]
階乗冪(下降階乗・上昇階乗)の微分
\[
\frac{d}{dx}P(x,y) =P(x,y)\left\{ \psi(1+x)-\psi(1+x-y)\right\}
\]