不完全ガンマ関数とガンマ関数との関係
不完全ガンマ関数とガンマ関数との関係
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数、\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\gamma\left(a,x\right)+\Gamma\left(a,x\right) & =\int_{0}^{x}t^{a-1}e^{-t}dt+\int_{x}^{\infty}t^{a-1}e^{-t}dt\\
& =\int_{0}^{\infty}t^{a-1}e^{-t}dt\\
& =\Gamma\left(a\right)
\end{align*}
ページ情報
タイトル | 不完全ガンマ関数とガンマ関数との関係 |
URL | https://www.nomuramath.com/flyweptl/ |
SNSボタン |
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
1次式の総乗と階乗
\[
\prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)}
\]