階乗と冪乗の極限
階乗と冪乗の極限
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\begin{align*}
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!} & =\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\frac{x}{k}\\
& =0
\end{align*}
ページ情報
タイトル | 階乗と冪乗の極限 |
URL | https://www.nomuramath.com/bs5ajhr9/ |
SNSボタン |
円周率
円周率πの定義と積分での表示。
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]
ウォリス積分の値
\[
\int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2}
\]
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]