すべての自然数の積(解析接続あり)
すべての自然数の積(解析接続あり)
\[ \prod_{k=1}^{\infty}k=\sqrt{2\pi} \]
\[ \prod_{k=1}^{\infty}k=\sqrt{2\pi} \]
\begin{align*}
\prod_{k=1}^{\infty}k & =\prod_{k=1}^{\infty}e^{\Log k}\\
& =\exp\left(\sum_{k=1}^{\infty}\Log k\right)\\
& =\exp\left(-\left[\sum_{k=1}^{\infty}-k^{-s}\Log k\right]_{s=0}\right)\\
& =\exp\left(-\left[\frac{d}{ds}\sum_{k=1}^{\infty}k^{-s}\right]_{s=0}\right)\\
& =\exp\left(-\left[\frac{d}{ds}\zeta\left(s\right)\right]_{s=0}\right)\\
& =\exp\left(-\zeta'\left(0\right)\right)\\
& =\exp\left(\Log\sqrt{2\pi}\right)\\
& =\sqrt{2\pi}
\end{align*}
ページ情報
タイトル | すべての自然数の積(解析接続あり) |
URL | https://www.nomuramath.com/gz540qzl/ |
SNSボタン |
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
ゼータ関数とイータ関数の関係
\[
\eta(s)=(1-2^{1-s})\zeta(s)
\]
リーマン・ゼータ関数とディレクレ・イータ関数の導関数の特殊値
\[
\zeta'\left(0\right)=-\Log\sqrt{2\pi}
\]
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]