冪関数と指数関数の積の積分
冪関数と指数関数の積の積分
(1)
\[ \int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C \](2)
\[ \int z^{\alpha}\beta^{z}dz=\frac{z^{\alpha}}{\Log\beta\left(-z\Log\beta\right)^{\alpha}}\Gamma\left(\alpha+1,-z\Log\beta\right)+C \]-
\(\Gamma\left(x,y\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \int z^{\alpha}e^{\beta z}dz & =\frac{\left(-\beta\right)^{\alpha}z^{\alpha}}{\left(-\beta z\right)^{\alpha}}\int\frac{\left(-\beta z\right)^{\alpha}}{\left(-\beta\right)^{\alpha+1}}e^{\beta z}d\left(-\beta z\right)\\ & =\frac{z^{\alpha}}{\left(-\beta\right)\left(-\beta z\right)^{\alpha}}\int^{-\beta z}z^{\alpha}e^{-z}dz\\ & =\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C \end{align*}(2)
\begin{align*} \int z^{\alpha}\beta^{z}dz & =\int z^{\alpha}e^{z\Log\beta}dz\\ & =\left[\int z^{\alpha}e^{\beta z}dz\right]_{\beta\rightarrow\Log\beta}\\ & =\left[\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C\right]_{\beta\rightarrow\Log\beta}\\ & =\frac{z^{\alpha}}{\Log\beta\left(-z\Log\beta\right)^{\alpha}}\Gamma\left(\alpha+1,-z\Log\beta\right)+C \end{align*}ページ情報
| タイトル | 冪関数と指数関数の積の積分 |
| URL | https://www.nomuramath.com/nmp735fv/ |
| SNSボタン |
反復積分に関するコーシーの公式
\[
\int_{a}^{x}\int_{a}^{y_{1}}\cdots\int_{a}^{y_{n-1}}f\left(y_{n}\right)dy_{n}\cdots dy_{1}=\frac{1}{\left(n-1\right)!}\int_{a}^{x}\left(x-t\right)^{n-1}f\left(t\right)dt
\]
微分と積分の関係
\[
f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a
\]
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]

