偏角・対数と絶対値
偏角・対数と絶対値
\(\alpha\ne0\)とする。
\(\alpha\ne0\)とする。
(1)
\[ \Arg\left(\left|\alpha\right|\beta\right)=\Arg\beta \](2)
\[ \Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta \](1)
\begin{align*} \Arg\left(\left|\alpha\right|\beta\right) & =-i\Log\left(\sgn\left(\left|\alpha\right|\beta\right)\right)\\ & =-i\Log\left(\sgn\left(\beta\right)\right)\\ & =\Arg\beta \end{align*}(2)
\begin{align*} \Log\left(\left|\alpha\right|\beta\right) & =\ln\left|\left|\alpha\right|\beta\right|+\Log\sgn\left(\left|\alpha\right|\beta\right)\\ & =\ln\left|\alpha\right|+\ln\left|\beta\right|+\Log\sgn\left(\beta\right)\\ & =\ln\left|\alpha\right|+\Log\beta \end{align*}ページ情報
タイトル | 偏角・対数と絶対値 |
URL | https://www.nomuramath.com/wrmjwxo9/ |
SNSボタン |
符号関数の偏角・対数
\[
\Log\sgn\alpha=i\Arg\alpha
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
負数の偏角と対数
\[
\Arg\alpha-\Arg\left(-\alpha\right)=2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi
\]
複素指数関数の極形式
\[
\alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}
\]