絶対値の冪乗
絶対値の冪乗
\[ \left|\alpha^{b}\right|=\left|\alpha\right|^{b} \]
\begin{align*} \left(\left|\alpha\right|^{b}\right)^{\gamma} & =\left|\alpha\right|^{b\gamma} \end{align*}
(1)
\[ \left(\left|\alpha\right|\beta\right)^{\gamma}=\left|\alpha\right|^{\gamma}\beta^{\gamma} \](2)
\[ \alpha^{\beta}=\left|\alpha\right|^{\beta}\sgn^{\beta}\left(\alpha\right) \](3)
\(b\in\mathbb{R}\)とする。\[ \left|\alpha^{b}\right|=\left|\alpha\right|^{b} \]
(4)
\(b\in\mathbb{R}\)とする。\begin{align*} \left(\left|\alpha\right|^{b}\right)^{\gamma} & =\left|\alpha\right|^{b\gamma} \end{align*}
(1)
\begin{align*} \left(\left|\alpha\right|\beta\right)^{\gamma} & =e^{\gamma\Log\left(\left|\alpha\right|\beta\right)}\\ & =e^{\gamma\left(\ln\left|\alpha\right|+\Log\beta\right)}\\ & =\left|\alpha\right|^{\gamma}\beta^{\gamma} \end{align*}(2)
\begin{align*} \alpha^{\beta} & =\left(\left|\alpha\right|\sgn\alpha\right)^{\beta}\\ & =\left|\alpha\right|^{\beta}\sgn^{\beta}\left(\alpha\right) \end{align*}(3)
\[ \begin{align*}\left|\alpha^{b}\right| & =\left|e^{b\Log\alpha}\right|\\ & =\left|e^{b\left(\Log\left|\alpha\right|+i\Arg\left(\alpha\right)\right)}\right|\\ & =\left|\left|\alpha\right|^{b}e^{ib\arg\alpha}\right|\\ & =\left|\left|\alpha\right|^{b}\right|\left|e^{ib\arg\alpha}\right|\\ & =\left|\alpha\right|^{b} \end{align*} \](4)
\begin{align*} \left(\left|\alpha\right|^{b}\right)^{\gamma} & =e^{\gamma\Log\left|\alpha\right|^{b}}\\ & =e^{\gamma b\ln\left|\alpha\right|}\\ & =\left|\alpha\right|^{b\gamma} \end{align*}ページ情報
タイトル | 絶対値の冪乗 |
URL | https://www.nomuramath.com/s1glm7de/ |
SNSボタン |
負数の偏角と対数
\[
\Arg\alpha-\Arg\left(-\alpha\right)=2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi
\]
偏角・対数の極限
\[
\lim_{x\rightarrow\pm0}\left\{ \Arg\left(\alpha x\right)-\Arg\left(x\right)\right\} =\begin{cases}
\Arg\alpha & x\rightarrow+0\\
\Arg\left(-\alpha\right)-\pi & x\rightarrow-0
\end{cases}
\]
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]
複素数の実部と虚部
\[
\Re\left(-z\right)=-\Re\left(z\right)
\]