最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | 最大値・最小値と絶対値の関係 |
URL | https://www.nomuramath.com/xcfbaj7y/ |
SNSボタン |
ベータ関数の微分
\[
\frac{\partial}{\partial x}B(x,y)=B(x,y)\left\{ \psi(x)-\psi(x+y)\right\}
\]
『距離空間での開集合全体の集合』を更新しました。
有界単調数列は収束する
因数分解による3次方程式の標準形の解
\[
x_{k}=\omega^{k}\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}-\omega^{3-k}\frac{p}{3}\frac{1}{\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}}\cnd{k\in\left\{ 0,1,2\right\} }
\]