分母に2乗のルートがある積分
分母に2乗のルートがある積分
\begin{align*} \int\frac{1}{\sqrt{z^{2}+\alpha}}dz & =\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\sinh^{\bullet}\frac{z}{\sqrt{\alpha}}+C\\ & =\tanh^{\bullet}\frac{z}{\sqrt{z^{2}+\alpha}}+C\\ & =\frac{1}{2}\left(\Log\left(1+\frac{z}{\sqrt{z^{2}+\alpha}}\right)-\Log\left(1-\frac{z}{\sqrt{z^{2}+\alpha}}\right)\right)+C \end{align*}
\begin{align*} \int\frac{1}{\sqrt{z^{2}+\alpha}}dz & =\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\sinh^{\bullet}\frac{z}{\sqrt{\alpha}}+C\\ & =\tanh^{\bullet}\frac{z}{\sqrt{z^{2}+\alpha}}+C\\ & =\frac{1}{2}\left(\Log\left(1+\frac{z}{\sqrt{z^{2}+\alpha}}\right)-\Log\left(1-\frac{z}{\sqrt{z^{2}+\alpha}}\right)\right)+C \end{align*}
(0-1)
\begin{align*} \int\frac{1}{\sqrt{z^{2}+\alpha}}dz & =\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\int\frac{1}{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}dz\\ & =\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\int\frac{1}{\sqrt{\left(\frac{z}{\sqrt{\alpha}}\right)^{2}+1}}d\frac{z}{\sqrt{\alpha}}\\ & =\frac{\sqrt{\alpha}\sqrt{\frac{z^{2}}{\alpha}+1}}{\sqrt{z^{2}+\alpha}}\sinh^{\bullet}\frac{z}{\sqrt{\alpha}}+C \end{align*}(0-2)
\begin{align*} \int\frac{1}{\sqrt{z^{2}+\alpha}}dz & =\int\frac{t}{z}dz\cnd{t=\frac{z}{\sqrt{z^{2}+\alpha}}\;,\;z^{2}=\alpha\frac{t^{2}}{1-t^{2}}\;,\;dt=\alpha\left(\frac{t}{z}\right)^{3}dz}\\ & =\frac{1}{\alpha}\int\left(\frac{z}{t}\right)^{2}dt\\ & =\int\frac{1}{1-t^{2}}dt\\ & =\tanh^{\bullet}t+C\\ & =\tanh^{\bullet}\frac{z}{\sqrt{z^{2}+\alpha}}+C \end{align*}(0-3)
\begin{align*} \int\frac{1}{\sqrt{z^{2}+\alpha}}dz & =\tanh^{\bullet}\frac{z}{\sqrt{z^{2}+\alpha}}+C\\ & =\frac{1}{2}\left(\Log\left(1+\frac{z}{\sqrt{z^{2}+\alpha}}\right)-\Log\left(1-\frac{z}{\sqrt{z^{2}+\alpha}}\right)\right)+C \end{align*}ページ情報
タイトル | 分母に2乗のルートがある積分 |
URL | https://www.nomuramath.com/mhz9n20x/ |
SNSボタン |
分母分子にべき乗があり分母には定数が足されている定積分
\[
\int_{0}^{\infty}\frac{x^{a}}{c+x^{b}}dx=\frac{c^{\frac{a+1}{b}-1}}{b}\pi\sin^{-1}\left(\frac{a+1}{b}\pi\right)
\]
3角関数と3角関数の対数の積分
\[
\int\sin\left(z\right)\log\left(\sin z\right)dz=-\cos z\log\sin z+\cos z+\log\left(\sin\frac{z}{2}\right)-\log\left(\cos\frac{z}{2}\right)+C
\]
(*)分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z+\alpha\right)\sqrt{z^{2}+\beta}}dz=\frac{\tanh^{\bullet}\left(\frac{\alpha z-\beta}{\sqrt{\alpha^{2}+\beta}\sqrt{\beta+z^{2}}}\right)}{\sqrt{\alpha^{2}+\beta}}
\]