巾関数の積分表現
巾関数の積分表現
\[ \frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt \]
\[ \frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt \]
-
\(\Gamma\left(z\right)\)はガンマ関数\begin{align*}
\frac{1}{z^{\alpha}} & =\frac{1}{\Gamma\left(\alpha\right)}\frac{\Gamma\left(\alpha\right)}{z^{\alpha}}\\
& =\frac{1}{\Gamma\left(\alpha\right)}\mathcal{L}_{t}\left[H\left(t\right)t^{\alpha-1}\right]\left(z\right)\\
& =\frac{1}{\Gamma\left(\alpha\right)}\int_{-\infty}^{\infty}H\left(t\right)t^{\alpha-1}e^{-zt}dt\\
& =\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt
\end{align*}
ページ情報
タイトル | 巾関数の積分表現 |
URL | https://www.nomuramath.com/wpw1zrxj/ |
SNSボタン |
畳み込みの定義
\[
\left(f*g\right)\left(x\right)=\int f\left(t\right)g\left(x-t\right)dt
\]
有理数全体の集合
\[
f\left(x\right)=\frac{1}{\left\lfloor x\right\rfloor +1-\left\{ x\right\} }
\]
凸関数・狭義凸関数・準凸関数・凹関数・狭義凹関数・準凹関数の定義
\[
\forall x_{1},x_{2}\in X,\forall t\in\left[0,1\right],f\left(tx_{1}+\left(1-t\right)x_{2}\right)\leq tf\left(x_{1}\right)+\left(1-t\right)f\left(x_{2}\right)
\]
畳み込みの性質
\[
\mathcal{F}\left(\left(f*g\right)\left(x\right)\right)=\mathcal{F}\left(\left(f\right)\left(x\right)\right)\mathcal{F}\left(\left(g\right)\left(x\right)\right)
\]