リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\begin{align*}
\zeta\left(s,1\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(1+k\right)^{s}}\\
& =\sum_{k=1}^{\infty}\frac{1}{k^{s}}\\
& =\zeta\left(s\right)
\end{align*}
ページ情報
タイトル | リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係 |
URL | https://www.nomuramath.com/jxqyaxms/ |
SNSボタン |
リーマン・ゼータ関数とディリクレ・イータ関数の定義
\[
\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]