フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[ \frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right) \]
(1)
\[ \frac{\partial}{\partial z}\zeta\left(s,z\right)=-s\zeta\left(s+1,z\right) \](2)
\(n\in\mathbb{N}_{0}\)とする。\[ \frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right) \]
(3)
\[ \zeta\left(s,\alpha+\beta\right)=\sum_{k=0}^{\infty}\left(-\beta\right)^{k}C\left(s+k-1,k\right)\zeta\left(s+k,\alpha\right) \]-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数(1)
\begin{align*} \frac{\partial}{\partial z}\zeta\left(s,z\right) & =\frac{\partial}{\partial z}\sum_{k=0}^{\infty}\frac{1}{\left(z+k\right)^{s}}\\ & =\sum_{k=0}^{\infty}\frac{-s}{\left(z+k\right)^{s+1}}\\ & =-s\zeta\left(s+1,z\right) \end{align*}(2)
\begin{align*} \frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right) & =\left(-s\right)\frac{\partial^{n-1}}{\partial z^{n-1}}\zeta\left(s+1,z\right)\\ & =P\left(-s,n\right)\zeta\left(s+n,z\right) \end{align*}(3)
\begin{align*} \zeta\left(s,\alpha+\beta\right) & =\sum_{k=0}^{\infty}\frac{\beta^{k}}{k!}\frac{\partial^{k}}{\partial\alpha^{k}}\zeta\left(s,\alpha\right)\\ & =\sum_{k=0}^{\infty}\frac{\beta^{k}}{k!}P\left(-s,k\right)\zeta\left(s+k,\alpha\right)\\ & =\sum_{k=0}^{\infty}\frac{\left(-\beta\right)^{k}}{k!}Q\left(s,k\right)\zeta\left(s+k,\alpha\right)\\ & =\sum_{k=0}^{\infty}\frac{\left(-\beta\right)^{k}}{k!}P\left(s+k-1,k\right)\zeta\left(s+k,\alpha\right)\\ & =\sum_{k=0}^{\infty}\left(-\beta\right)^{k}C\left(s+k-1,k\right)\zeta\left(s+k,\alpha\right) \end{align*}ページ情報
タイトル | フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開 |
URL | https://www.nomuramath.com/uygwf6zg/ |
SNSボタン |
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]
フルヴィッツのゼータ関数の定義
\[
\zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の非正整数値
\[
\zeta\left(-n,\alpha\right)=-\frac{1}{n+1}B_{n+1}\left(\alpha\right)
\]
フルヴィッツ・ゼータ関数の積分表現
\[
\zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\]