ソフィー・ジェルマンの恒等式
ソフィー・ジェルマンの恒等式
\[ a^{4}+4b^{4}=\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right) \]
\[ a^{4}+4b^{4}=\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right) \]
\begin{align*}
a^{4}+4b^{4} & =a^{4}+4a^{2}b^{2}+4b^{4}-4a^{2}b^{2}\\
& =\left(a^{2}+2b^{2}\right)^{2}-\left(2ab\right)^{2}\\
& =\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right)
\end{align*}
ページ情報
タイトル | ソフィー・ジェルマンの恒等式 |
URL | https://www.nomuramath.com/uzape5sg/ |
SNSボタン |
4次方程式標準形の解き方
\[
y=\frac{\mp_{1}\sqrt{2u-p}\pm_{2}\sqrt{-p-2u-\frac{4q}{2\sqrt{2u-p}}}}{2}
\]
4次方程式の標準形
\[
X^{4}+pX^{2}+qX+r=0
\]
n乗同士の和と差の因数分解
\[
a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right)
\]
交代式の因数分解
\[
\text{交代式}=\text{差積}\times\text{対称式}
\]