収束する数列の部分列は同じ値に収束する
収束する数列の部分列は同じ値に収束する
(1)
無限数列\(\left(a_{n}\right)\)が収束するとき、その部分列\(\left(a_{\sigma\left(n\right)}\right)\)も同じ値に収束する。(2)
無限数列\(\left(a_{n}\right)\)が正(負)の無限大に発散するとき、その部分列\(\left(a_{\sigma\left(n\right)}\right)\)も正(負)の無限大に発散する。(1)
無限数列\(\left(a_{n}\right)\)が収束するのでその値を\(a\)とすると、\[ \lim_{n\rightarrow\infty}a_{n}=a \] となるので、
\[ \forall\epsilon>0\;,\;\exists N\in\mathbb{N}\;;\;n\geq N\Rightarrow\left|a_{n}-a\right|<\epsilon \] である。
部分列は\(n<\sigma\left(n\right)\)なので、
\[ \forall\epsilon>0\;,\;\exists N\in\mathbb{N}\;;\;\sigma\left(n\right)>n\geq N\Rightarrow\left|a_{\sigma\left(n\right)}-a\right|<\epsilon \] となり、
\[ \lim_{n\rightarrow\infty}a_{\sigma\left(n\right)}=a \] となるので同じ値に収束する。
(2)
無限大に発散する場合無限数列\(\left(a_{n}\right)\)が無限大に発散するとき、
\[ \lim_{n\rightarrow\infty}a_{n}=\infty \] となるので、
\[ \forall M>0\;,\;\exists N\in\mathbb{N}\;;\;n\geq N\Rightarrow a_{n}>M \] である。
部分列は\(n<\sigma\left(n\right)\)なので、
\[ \forall M>0\;,\;\exists N\in\mathbb{N}\;;\;\sigma\left(n\right)>n\geq N\Rightarrow a_{\sigma\left(n\right)}>M \] となるので部分列も無限大に発散する。
負の無限大に発散するときも同様である。
ページ情報
タイトル | 収束する数列の部分列は同じ値に収束する |
URL | https://www.nomuramath.com/tooj0jka/ |
SNSボタン |
上限・下限・最大元・最小元・上極限・下極限の和
\[
\sup_{n\in\mathbb{N}}\left(a_{n}+b_{n}\right)\leq\sup_{n\in\mathbb{N}}a_{n}+\sup_{n\in\mathbb{N}}b_{n}
\]
連続な関数列の一様収束極限は連続関数
上限・下限・最大元・最小元・上極限・下極限の積
\[
\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)\leq\sup_{n\in\mathbb{N}}a_{n}\sup_{n\in\mathbb{N}}b_{n}
\]
ワイエルシュトラスのM判定法(優級数判定法)