条件収束と絶対収束の定義
条件収束と絶対収束の定義
(1)絶対収束
数列\(\left\{ a_{n}\right\} \)の各項\(a_{n}\)の絶対値をとった総和が\(\sum_{k=1}^{\infty}\left|a_{n}\right|<\infty\)となるとき、\(\sum_{k=1}^{\infty}a_{n}\)は絶対収束するという。(2)条件収束
数列\(\left\{ a_{n}\right\} \)の各項\(a_{n}\)の総和\(\sum_{k=1}^{\infty}a_{n}\)は収束するが絶対収束しない\(\sum_{k=1}^{\infty}\left|a_{n}\right|=\infty\)とき、\(\sum_{k=1}^{\infty}a_{n}\)は条件収束するという。ページ情報
タイトル | 条件収束と絶対収束の定義 |
URL | https://www.nomuramath.com/jwdb11vu/ |
SNSボタン |
無限正項級数は順序変更出来る
無限正項級数は順序変更できる。
収束する数列の部分列は同じ値に収束する
無限数列$\left(a_{n}\right)$が収束するとき、その部分列$\left(a_{\sigma\left(n\right)}\right)$も同じ値に収束する。
上限と下限・最大元と最小元・上極限と下極限との関係
\[
\inf_{n\in\mathbb{N}}\left(-a_{n}\right)=-\sup_{n\in\mathbb{N}}\left(a_{n}\right)
\]
有界閉区間上の連続関数はリーマン可積分
有界閉区間上の連続関数はリーマン可積分である。