距離空間の定義
距離空間の定義
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
(a)非退化性
\[ \forall x,y\in X,d\left(x,y\right)=0\Leftrightarrow x=y \](b)対称性
\[ \forall x,y\in X,d\left(x,y\right)=d\left(y,x\right) \](c)3角不等式
\[ \forall x,y,z\in X,d\left(x,y\right)\leq d\left(x,z\right)+d\left(z,y\right) \] また上の3つより、(d)非負性
\[ \forall x,y\in X,d\left(x,y\right)\geq0 \] が導かれる。(1)非負性の導出
任意の\(x,y\in X\)に対し、3角不等式より、\(d\left(x,x\right)\leq d\left(x,y\right)+d\left(y,x\right)\)となり、非退化性と対称性より、\(0\leq2d\left(x,y\right)\)となるので両辺を2で割って\(0\leq d\left(x,y\right)\)となる。これより、非負性を満たす。
ページ情報
タイトル | 距離空間の定義 |
URL | https://www.nomuramath.com/z8txcqf7/ |
SNSボタン |
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
単射により誘導された距離空間
\[
d_{f}\left(a,b\right)=d\left(f\left(a\right),f\left(b\right)\right)
\]
開球同士が交わるときの包含関係
\[
B\left(x_{1},r_{1}\right)\cap B\left(x_{2},r_{2}\right)\ne\emptyset\land r_{2}\leq r_{1}\Rightarrow B\left(x_{2},r_{2}\right)\subseteq B\left(x_{1},3r_{1}\right)
\]
集合同士が交わるならば距離は0
\[
A\cap B\ne\emptyset\Rightarrow d\left(A,B\right)=0
\]