距離空間と位相空間の関係
距離空間と位相空間の関係
距離空間\(\left(X,d\right)\)の開集合族\(\mathcal{O}\)は位相空間\(\left(X,\mathcal{O}\right)\)になる。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)の開集合族\(\mathcal{O}\)は位相空間\(\left(X,\mathcal{O}\right)\)になる。
逆は一般的に成り立たない。
\(\Rightarrow\)
開集合\(O\)の定義\(\exists O\subseteq X,\forall a\in O,\exists\epsilon>0,U_{\epsilon}\left(a\right)\subseteq O\)より、\(\emptyset,X\in\mathcal{O}\)となる。任意の\(A,B\in\mathcal{O}\)に対し、\(\forall x_{1}\in A,\exists\epsilon_{1}>0,U_{\epsilon_{1}}\left(x_{1}\right)\subseteq A\)となり、同様に\(\forall x_{2}\in B,\exists\epsilon_{2}>0,U_{\epsilon_{2}}\left(x_{2}\right)\subseteq B\)となる。
このとき、任意の\(x\in A\cap B\)に対して、小さいほうの\(\epsilon\)-近傍は\(U_{\min\left(\epsilon_{1},\epsilon_{2}\right)}\left(x\right)\)となるので、\(U_{\min\left(\epsilon_{1},\epsilon_{2}\right)}\left(x\right)\subseteq\left(A\cap B\right)\Leftrightarrow U_{\min\left(\epsilon_{1},\epsilon_{2}\right)}\left(x\right)\subseteq A\land U_{\min\left(\epsilon_{1},\epsilon_{2}\right)}\left(x\right)\subseteq B\)\(\Leftrightarrow\top\)となり、開集合同士の有限積集合は開集合となる。
任意の\(\lambda\in\Lambda\)に対し\(O_{\lambda}\in\mathcal{O}\)とする。\(A=\bigcup_{\lambda\in\Lambda}O_{\lambda}\)とおくと、\(A\)に含まれる任意の元\(x\in A\)はある\(\lambda_{0}\)が存在し、\(x\in O_{\lambda_{0}}\)となる。
これより、ある\(\epsilon\)-近傍\(U_{\epsilon}\left(x\right)\)が存在し、\(U_{\epsilon}\left(x\right)\subseteq O_{\lambda_{0}}\)となり\(O_{\lambda_{0}}\subseteq A\)なので\(U_{\epsilon}\left(x\right)\subseteq A=\bigcup_{\lambda\in\Lambda}O_{\lambda}\)となり開集合同士の和集合は開集合になる。
これらより、題意は成り立つ。
\(\Leftarrow\)は一般的に成り立たない
反例で示す。\(2\leq\left|X\right|\)の密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は距離化不可能であるので逆は一般的に成り立たない。
ページ情報
タイトル | 距離空間と位相空間の関係 |
URL | https://www.nomuramath.com/urxsr0ys/ |
SNSボタン |
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]
点列の収束と任意の部分列の収束
点列の収束と任意の部分列の収束
連続と開集合の逆像が開集合は同値
連続と開集合の逆像が開集合は同値
パリ距離は距離空間
\[
d\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
\left|\boldsymbol{x}-\boldsymbol{y}\right| & \exists c\in\mathbb{R},\boldsymbol{y}=c\boldsymbol{x}\\
\left|\boldsymbol{x}\right|+\left|\boldsymbol{y}\right| & other
\end{cases}
\]