距離空間ならば第1可算公理を満たす
距離空間ならば第1可算公理を満たす
距離空間\(\left(X,d\right)\)ならば第1可算公理を満たす。
逆は一般的に成り立たない。
距離空間\(\left(X,d\right)\)ならば第1可算公理を満たす。
逆は一般的に成り立たない。
\(\Rightarrow\)
任意の\(x\in X\)に対し、\(x\)での基本近傍系\(\mathcal{B}_{x}\)を\(\mathcal{B}_{x}=\left\{ B\left(x,\frac{1}{n}\right);n\in\mathbb{N}\right\} \)とおけば\(\mathcal{B}_{x}\)は高々可算濃度なので第1可算公理を満たす。故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)は一般的に成り立たない
反例で示す。上限位相\(\left(\mathbb{R},\mathcal{O}_{u}\right)\)は基本近傍系\(\mathcal{B}_{x}\)を\(\mathcal{B}_{x}=\left\{ \left(x-\frac{1}{n},x\right];n\in\mathbb{N}\right\} \)とすれば\(\mathcal{B}_{x}\)は高々可算濃度なので第1可算公理を満たすが、距離化不可能である。
故に\(\Leftarrow\)は一般的に成り立たない。
ページ情報
タイトル | 距離空間ならば第1可算公理を満たす |
URL | https://www.nomuramath.com/od3mdqpb/ |
SNSボタン |
距離空間での収束の定義と開集合による別定義
\[
\exists a\in X,\forall\epsilon>0,\exists N\in\mathbb{N},N<n\rightarrow d\left(a_{n},a\right)<\epsilon
\]
全有界ならば有界
全有界ならば有界である。
有限集合で距離化可能なのは離散位相のみ
有限位相空間では距離化可能と離散位相は同値である。
ε近傍(開球)の定義
\[
U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]