内部の最大性と閉包の最小性
内部の最大性と閉包の最小性
位相空間\(\left(X,\mathcal{O}\right)\)とその部分集合\(A\subseteq X\)と開集合\(O\in\mathcal{O}\)と閉集合\(F=O^{c}\)がある。
このとき次が成り立つ。
\(A^{a}\)は閉包
位相空間\(\left(X,\mathcal{O}\right)\)とその部分集合\(A\subseteq X\)と開集合\(O\in\mathcal{O}\)と閉集合\(F=O^{c}\)がある。
このとき次が成り立つ。
(1)内部の最大性
\[ O\subseteq A\Leftrightarrow O\subseteq A^{i} \](2)閉包の最小性
\[ A\subseteq F\Leftrightarrow A^{a}\subseteq F \]-
\(A^{i}\)は内部\(A^{a}\)は閉包
(1)
\(\Rightarrow\)
\(O\nsubseteq A^{i}\)と仮定すると、\(A^{i}\subsetneq A^{i}\cup O\)となる。このとき、\(A^{i},O\)は共に開集合なので、\(A^{i}\cup O\)も開集合となるが、\(O\subseteq A\land A^{i}\subseteq A\)なので\(A^{i}\cup O\subseteq A\)となる。
従って\(A^{i}\subsetneq A^{i}\cup O\subseteq A\)となり、\(A^{i}\)は\(A\)に含まれる最大の開集合であるがその間に開集合\(A^{i}\cup O\)が存在するので矛盾。
故に背理法より、\(O\subseteq A^{i}\)となる。
\(\Leftarrow\)
\(O\subseteq A^{i}\)のとき\(O\subseteq A^{i}\subseteq A\)が成り立つので\(\Leftarrow\)が成り立つ。\(\Leftrightarrow\)
これらより、\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。(2)
(1)より、\(A^{c}\subseteq O^{c}\leftrightarrow A^{ic}\subseteq O^{c}\Leftrightarrow A^{c}\subseteq F\leftrightarrow A^{ca}\subseteq F\)となるので\(A^{c}\rightarrow A\)と置きなおせば\(A\subseteq F\leftrightarrow A^{a}\subseteq F\)となり与式が成り立つ。(2)-2
\(\Rightarrow\)
\(A^{a}\nsubseteq F\)と仮定すると、\(A^{a}\cap F\subsetneq A^{a}\)となる。このとき、\(A^{a},F\)は共に閉集合なので、\(A^{a}\cap F\)も閉集合となるが、\(A\subseteq F\land A\subseteq A^{a}\)なので\(A\subseteq A^{a}\cap F\)となる。
従って\(A\subseteq A^{a}\cap F\subsetneq A^{a}\)となり、\(A^{a}\)は\(A\)を含む最小の閉集合であるがその間に閉集合\(A^{a}\cap F\)が存在するので矛盾。
故に背理法より、\(A^{a}\subseteq F\)となる。
\(\Leftarrow\)
\(A^{a}\subseteq F\)のとき\(A\subseteq A^{a}\subseteq F\)が成り立つので\(\Leftarrow\)が成り立つ。\(\Leftrightarrow\)
これらより、\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
タイトル | 内部の最大性と閉包の最小性 |
URL | https://www.nomuramath.com/o5dx23e9/ |
SNSボタン |
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]
ヘヴィサイドの階段関数と符号関数の関係
\[
H_{a}\left(x\right)=\frac{\sgn\left(x\right)+1}{2}+\left(a-\frac{1}{2}\right)\delta_{0,x}
\]
関数の偶奇分解
\[
f\left(x\right)=f_{e}\left(x\right)+f_{o}\left(x\right)
\]
交換子・反交換子と指数関数の定義
\[
\left[\hat{A},\hat{B}\right]=\hat{A}\hat{B}-\hat{B}\hat{A}
\]