ラッセルのパラドックス
ラッセルのパラドックス
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
\(R\in R\)と仮定すると、\(R\)の定義より\(R\notin R\)となり矛盾。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
ページ情報
タイトル | ラッセルのパラドックス |
URL | https://www.nomuramath.com/luoi3e13/ |
SNSボタン |
2人の曜日と性別問題
子供が2人いて少なくとも1人は日曜日に生まれた男の子のとき、2人共男の子の確率は?
上限・下限と上極限・下極限の積の大小関係
\[
\left(\sup_{n\in\mathbb{N}}a_{n}\right)\left(\inf_{n\in\mathbb{N}}b_{n}\right)\leq\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)
\]
独立と無相関の定義
\[
P\left(X=x,Y=y\right)=P(X=x)P(Y=y)
\]
円となるための条件
\[
\frac{a^{2}+b^{2}}{4}-c>0
\]