ラッセルのパラドックス
ラッセルのパラドックス
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
\(R\in R\)と仮定すると、\(R\)の定義より\(R\notin R\)となり矛盾。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
ページ情報
| タイトル | ラッセルのパラドックス |
| URL | https://www.nomuramath.com/luoi3e13/ |
| SNSボタン |
『3点を通る円』を更新しました。
ヘヴィサイドの階段関数の2定義値と複号
\[
H\left(\pm1\right)=\frac{1\pm1}{2}
\]
3階のエディントン・イプシロンの性質
\[
\epsilon_{ijk}=\det\left(\begin{array}{ccc}
\delta_{1i} & \delta_{1j} & \delta_{1k}\\
\delta_{2i} & \delta_{2j} & \delta_{2k}\\
\delta_{3i} & \delta_{3j} & \delta_{3k}
\end{array}\right)
\]
数列が全てで割り切れる素数
\[
a_{n}=19^{n}+\left(-1\right)^{n-1}2^{4n-3},n\in\mathbb{N}
\]

