ラッセルのパラドックス
ラッセルのパラドックス
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
自分自身を要素として持たない集合全体の集合\(R=\left\{ A;A\notin A\right\} \)は存在しない。
\(R\in R\)と仮定すると、\(R\)の定義より\(R\notin R\)となり矛盾。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
また、\(R\notin R\)と仮定すると、\(R\)の定義より\(R\in R\)となり矛盾。
故に集合\(R\)は存在しない。
ページ情報
タイトル | ラッセルのパラドックス |
URL | https://www.nomuramath.com/luoi3e13/ |
SNSボタン |
『点と集合との距離の関係』を更新しました。
『収束列と閉集合・閉包・稠密との関係』を更新しました。
『pノルム(一般化ユークリッド空間距離)は距離空間』を更新しました。
分割数の定義と母関数
\[
\sum_{k=0}^{\infty}P\left(k\right)z^{k}=\prod_{k=1}^{\infty}\frac{1}{1-z^{k}}
\]