対角集合の定義
対角集合の定義
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
集合\(X\)が与えられているとする。直積集合\(X\times X\)の部分集合\(\Delta_{X}=\left\{ \left(x,y\right)\in X\times X;x=y\right\} =\left\{ \left(x,x\right)\in X\times X\right\} \subseteq X^{2}\)を\(X\times X\)の対角集合または対角線集合という。
\(X=\left\{ a,b\right\} \)とすると\(\Delta_{X}=\left\{ \left(a,a\right),\left(b,b\right)\right\} \)となる。
ページ情報
タイトル | 対角集合の定義 |
URL | https://www.nomuramath.com/stzx0gqp/ |
SNSボタン |
順序集合の双対順序集合と狭義順序集合の狭義逆順序
\[
\succeq:=\left\{ \left(a,b\right)\in X^{2};b\preceq a\right\}
\]
エジプト式分数の個数
エジプト式分数は無数に存在する。
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
積位相(直積位相)の定義と性質